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Preface 
These notes were written to accompany NE582, which is a graduate level course in Monte Carlo 

Analysis.  This course is aimed primarily at nuclear engineering graduate students and follows a 

course (NE583) in deterministic neutral particle transport calculation methods. 

 

Since the present course comes second (for most students) the actual derivation of the Boltzmann 

transport equation occurs in the first course and is not repeated here. 

 

But a stronger effect of this being a follow-up course is the actual approach taken. Toward the 

Monte Carlo method itself.  In the first decades of my career (at the Savannah River Plant and  

Laboratory) I worked more with deterministic methods of neutral particle transport (diffusion 

theory, discrete ordinates, integral transport methods) than I did with Monte Carlo.  So, when I 

arrived at the university and it fell to me to teach a Monte Carlo course, I was never quite 

satisfied with how the method is presented (or even understood by most practitioners). I was 

more used to studying and coding numerical methods that began with a clear statement of the 

functional approximation that is occurring (e.g., expanding a desired function in a truncated 

Legendre polynomial series) and then solving for the coefficients.  It bothered me that Monte 

Carlo methods do not do this, even though they are obviously approximating a continuous 

function, the particle flux, with a finite representation, just like the “deterministic” methods.  In 

my zeal to correct this shortcoming I began teaching my (somewhat bewildered) students the 

function substitution approach, which is now relegated (in its full treatment) to the last chapters 

of this text, and wrote a paper explaining the approach.  The paper was rejected and the students 

remained bewildered, so I eventually bowed to the reality that most developers and students 

regard Monte Carlo as a statistical simulation and not a method of solving an equation, and I 

returned to the more conventional order of presenting the material that you see here. 

 

Although my heart is still with the function-substitution approach, I have relegated it to the later 

chapters and focused this course on the more immediately usable material in Chapters 1-4.  Even 

when I tentatively introduce the Dirac substitution in Chapters 5 and 6, I lay low on the fuller 

development until the advanced chapters beginning with Chapter 7. 

 

So, the structure of the material is such that: 

 Chapters 1 & 2 cover the basic mathematical tools needed for Monte Carlo sampling and 

scoring. 

 Chapters 3 & 4 apply these tools to an event-based neutral particle transport approach 

 Chapter 5 introduces the Dirac delta function approximation method with general integral 

equation application 

 Chapter 6 applies the Chapter 5 approximation to the neutral particle transport equation, 

both in forward and in adjoint form. 

 Chapter 7 and beyond explore higher order Monte Carlo approximations beyond the 

Dirac delta. 
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Chapter 1  Basic Monte Carlo Concepts 

1.1 Introduction 
Monte Carlo is a branch of mathematics that involves both modeling of stochastic event-based 

problems and the stochastic solution of equations.  In a sense, it is (and certainly feels like, when 

you do it) an experimental approach to solving a problem. It is like playing a game, hence the 

name (and probably hence the reason I like it). 

 

When the analyst is trying to use a Monte Carlo approach to estimate a desired physical or 

mathematical value, the approach breaks itself down into two steps:   

 

1. Devise a numerical experiment whose expected result will correspond to the desired 

value, x . 

2. Run the problem to determine an estimate to this expected result.  We call the estimate x̂ .   

 

[NOTE: Throughout the course, the caret on top of a variable will denote a 

random variable. If it also has a subscript, then it denotes a sampled value of that 

variable.] 

The first step can either be very simple or very complicated, based on the situation.  If the 

mathematical or physical situation is itself stochastic, the experimental design step is very 

simple:  We simply let the Monte Carlo simulation mirror the stochastic “rules” of the situation.  

This is called an analog simulation, since the calculation is a perfect analog to the mathematical 

or physical situation. 

 

Luckily for us, the physical situation we are focusing on—the interaction of neutral particles 

with material—is a stochastic situation.  All we have to do to get an estimate of a measurable 

effect from a transport situation is to simulate the decisions that nature makes in neutral particle 

transport: the probabilities involved in particle birth, particle travel through material media, 

particle interaction with the material, and particle contribution to the desired measurable value 

(also known as the "effect of interest" or “tally”).  

 

For processes that are not inherently stochastic, the experimental design is more complex and 

generally requires that the analyst:   

 

1. Derive an equation (e.g., heat transfer equation, Boltzmann transport equation) from 

whose solution an estimate of the effect of interest can be obtained. 

2. Develop a Monte Carlo algorithm to solve the equation. 

 

Even more luckily for us, the transport of neutral particles falls into this second category as well: 

We have an equation to attack, and we can do so without any thought to the fact that the physical 

situation is itself stochastic.  

 



1-2 

 

In this course we will take advantage of the fact that the neutral particle transport equation falls 

into both categories, examining transport first as an event-based analog simulation, and then as 

the solution of a mathematical equation.  I hope that this dual-view approach will give you 

particular insight into the Monte Carlo methods commonly used in Monte Carlo transport codes. 

 

The rest of this section follows the traditional first example of Monte Carlo: a numerical 

estimation of , based on use of a "dart board" approach.  We know that the ratio of the area of 

circle to the area of the square that (just barely) superscribes it  

 

 

is:  

2

2
42

r

r
                                                            (1-1) 

Knowing this, we can design an experiment that will deliver an expected value of .   Let’s set 

the origin at the center of the circle and the radius at 1; this gives us a circle area of exactly .  

The experiment will then be:  

1. Choose a point at random inside the square (assumed to span -1 to 1 in both x and y) by:  

 Choosing a random number between -1 and 1 for the x coordinate, and  

 Choosing a random number between -1 and 1 for the y coordinate. 

2. Score the result of a the trial:  Consider a “hit” (score = 4) to be the situation when the 

chosen point is inside the circle, i.e., 2 2 1x y  , with a “miss” scoring 0.  

 

Note: This may seem a little strange to you, to have an experiment with an 

“expected value” of , when the only possible real results are 0 and 4.  We 

professors are frequently accused of expecting the impossible.  By the way, why is 

the score for a “hit” 4 instead of 1?  A single trial of the area of something inside 

a square of area 4 can only result in one of two results:  Either the inside object 
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isn’t there (area=0) or it fills the box (area=4).  These “scores” are nothing more 

than very crude estimates of the circle’s area.  

 
    3.  Run the experiment a large number (N) of times, with the final estimate of the circle’s area 

being an average of the results:  

1ˆ

N

i

i
N

s

N  

            where 
is  is the score for trial i.   

 

A Java computer code to play this game is given by: 

 
import java.util.Scanner; 

class Pi 

{ 

  public static void main(String[] args) 

  { 

    double pireal=Math.PI; 

    while(true) 

    { 

      System.out.println(“Input n?”); 

      Scanner sc=new Scanner(System.in); 

      int ntry=sc.nextInt(); 

 

      if(ntry < 1)System.exit(0); 

      int n=ntry; 

      double pi=0.; 

//********************************************************************** 

//                                                                     * 

//      For each history:                                              * 

//                                                                     * 

//********************************************************************** 

      for(int ihistory=0;ihistory<n;ihistory++) 

      { 

        double x=2.*Math.random()-1.; 

        double y=2.*Math.random()-1.; 

        double score=0.; 

        if(x*x+y*y < 1.)score=4.; 

        pi+=score; 

      } 

      pi/=n; 

      System.out.println(“ After “+n+” trials, pi is estimated to be “+pi); 

//********************************************************************** 

//                                                                     * 

//     Go back and see if user wants to run another problem            * 

//                                                                     * 

//********************************************************************** 

    } 

  } 

} 

 

[NOTE: For those of you interested, Appendix A, contains some instructions for 

getting the Java language (which is free) and a brief tutorial on the subset of Java 

used in this course.] 

 

The results from running the program with various numbers of histories (with error) is: 



1-4 

 

 

 
 

After        10 trials, pi is estimated to be 3.2  

After       100 trials, pi is estimated to be 3.08 

After      1000 trials, pi is estimated to be 3.124  

After     10000 trials, pi is estimated to be 3.1772 

After    100000 trials, pi is estimated to be 3.14408  

After   1000000 trials, pi is estimated to be 3.141196 

After  10000000 trials, pi is estimated to be 3.1418224  

After 100000000 trials, pi is estimated to be 3.14160504 

 

By the way, the 10 million history case only took about a second on my laptop (which, I know, 

will seem ridiculously slow to future students). 

1.2 Statistical tools 
There are three statistical formulae that we will be using over and over in this course:   

1. Our estimate of the mean.  

2. Our estimate of the standard deviation of the sample. 

3. Our estimate of the standard deviation of the mean. 

Monte Carlo as a stream of estimates 

Our basic view of a Monte Carlo process (properly designed to deliver an unbiased estimate of a 

desired physical or mathematical value of interest) is a black box that has a stream of random 

numbers as input and a stream of estimates of the effect of interest as outputs:  

 

 

 

As we saw in our previous Java example (estimation of ), sometimes the estimates can be 

quite approximate, but with a long enough stream of x’s, we can get a good estimate from the 

average. The three formulae that we will develop here will help us gather important information 

from the estimates.  

Estimate of the expected value, x̂  

The first, easiest, and most important, deals with how we gather the best possible estimate of the 

expected value from the stream of estimates.  The resulting formula for x̂  is: 

1

ˆ

ˆ

N

i

i

x

x
N                                                                (1-2)
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Thus, our overall best estimate is the unweighted average of the individual estimates, x̂ , from 

each of the Monte Carlo histories 

 

Let's compare this with two other situations:  

1. Choosing from a continuous probability density function, x , over a domain (a,b) 

(i.e., x=a to x=b).  

2. Choosing from a discrete distribution, where you can only choose from M values, each of 

which has a probability of i  (e.g., throwing a die with 6 sides). 

[NOTE: I know it is confusing to use x  as the distribution when we just ran a 

problem to estimate , but I like using pi as the PDF, so you will just have to live 

with it.] 

 

Review of PDFs and CDFs 

Before we go any further, let’s get on the same page about PDF’s and CDF’s.  A probability 

density function (PDF) is a general measure of the probability of choosing given individual 

element from the set of all possible choices.  A cumulative distribution function (CDF) is the 

probability of choosing an element EQUAL TO OR LESS than a given individual element; the 

CDF is the integral of the PDF, so is—in general—smoother 

 

[NOTE: The “D” is different in the two abbreviations.] 

 

PDFs come in two flavors for our purposes: 

1. Situations in which there are a finite number of discrete choices ( ix ), each of which has a 

given probability, i , of being chosen.  

2. Situations in which there is a continuous (infinitely dense) range of values that can be 

chosen, with the probabilities expressed in terms of probabilities of choosing within 

differentially sized ranges of values, using: 

Pr{  chosen in } ( )x dx x dx
 

[NOTE: It is extremely interesting to read the statistical literature, in which they 

deal with the logical inconsistency of choosing a single value from among an 

uncountably infinite number of choices.  The logical inconsistency is, of course, 

that you end up choosing an element even though the probability of picking each 

element has to be zero (which is NOT because they are infinite but because they 

are UNCOUNTABLY infinite).  They end up discriminating between “countably” 

infinite and “uncountably” infinite values, etc.  It is interesting (as I said) but 

ultimately not useful for those of us who work with computers:  Since we will 

always (I assume) work with real numbers with a fixed number of digits, we are 

never really choosing from an infinite number of choices when we pick a number 
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between 0 and 1.  So, I am not going to get you wrapped around that axle in this 

course.] 

Each flavor of PDF has two rules: one involving non-negativity and one requiring that the sum of 

the probabilities of all possible choices equals one.  For continuous, these rules amount to:  

1. ( ) 0x in the domain  ( , )and  

2. ( ) 1x dx  

 

For discrete distributions, the corresponding rules are: 

1. 
0i for i=1,2,..M  

2. 1

1
M

i

i  

[NOTE: In problems that I give you—either in this writeup or orally—I reserve 

the right to state PDFs in unnormalized form.  It is your responsibility to make 

sure that PDFs are normalized to add or integrate to 1.  For example, I will often 

speak of a “uniform (or flat) distribution between a and b.”  I am saying that the 

PDF is a constant, but I am NOT telling you what the constant IS; that is your 

responsibility.y  Okay.  Just this once.  The normalized PDF is 
1

( )x
b a

 .] 

CDFs are denoted in this course with the CAPITAL pi and are defined by: 

1

j

j i

i                                                              (1-3) 

for discrete distributions and by: 

( ) ( )

x

x x dx

                                                     (1-4) 

for continuous distributions.

 

Estimate of the mean,  x  

For a continuous distribution, the true mean, x , is found from:  

( ) ( )x E x x x dx

                                              (1-5)

 

For the discrete distribution, the corresponding definition for x is:  
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1

( )
M

i i

i

x E x x                                               (1-6) 

 

The E(…) notation is read as “the expected value of x”.  If I refer to the “expected value of” 

something else, then that something else would replace “x” in the above equations.  For example, 

the expected value of x
2
 would be written: 

2 2( ) ( )E x x x dx                                                  (1-7)

 

or 

2 2

1

( )
M

i i

i

E x x                                                      (1-8)

 

As previously illustrated, we approximate the mean with Monte Carlo samples using an unbiased 

average of the sample results: 

1ˆ

N

i

i

x

x x
N                                                         (1-9) 

 
Example:  For our example of finding , we were dealing with a binomial 

distribution (i.e., two possible outcomes):  

 

Outcome 1 = Hit the circle: 1 14; / 4 0.7854...x   

Outcome 2 = Miss the circle:
 

2 2 10; 1 0.2146...x    

 

Therefore, the expected value is:  

2

1

(0.7854...) (4) (0.2146...) (0)i i

i

x  

Included in the text (Equations 7.65 through 7.68) is a simple derivation that 

shows that Equation (1-9) is an unbiased estimate of x , given that the individual 

estimates themselves are unbiased. 
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Estimate of the variance of the sample, 
2

 

As you know from statistics, the variance of a sample is the expected value of the squared error. 

It is a measure of the amount of variation we should expect from samples.  The formulae, for the 

various distributions we have considered, are:  

For continuous distribution: 
2 2 2(( ) ) ( )( )

b

a

E x x x x x dx          (1-10) 

For a discrete distribution: 
2 2 2

1

(( ) ) ( )
M

i i

i

E x x x x              (1-11) 

Analogous to our estimate of the mean, we have an estimate of the variance from Monte Carlo 

samples that is given by a straight average of each sample’s error squared: 

 

2 2

2 1 1

ˆ ˆ ˆ( ) ( )

1

N N

n n

n n

x x x x

N N                                           (1-12)
 

where the samples ˆ
nx are chosen using the PDF ˆ( )x .  

This equation has some features that need explaining:  

1. The second equation is an estimate of the first; the difference is that we square the 

difference from x̂  instead of the difference from the true mean x .  This is because we 

usually do not know x , just our estimate for it.  

 

2. The second equation divides by N-1  instead of N. The reduction to N-1 compensates for 

the loss of a degree of freedom when we use x̂ for x .  

[NOTE: If you KNOW the true mean, then you can use it and divide by N.] 

 

An interesting derivation from the book is the one from the text's equations (7-94) through (7-

99); it shows that this is an unbiased estimate of the true variance of the sample.   

Simplified calculational formula 

The problem with using the above equation for the estimate of the variance is that you cannot 

begin to use it until you know x̂ , which is not known until after all the samples have been drawn 

and averaged; therefore, to use this equation would mean that you would have to save all of the 

estimates, ˆ
nx , until the end of the problem.   

 

Fortunately, the equation can be reduced to a simpler form by simply expanding the square (like 

we learned in Algebra I):  
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2

2 1

2 2

1

2

21 1 1

2

21

2

21

2

ˆ ˆ( )

1

ˆ ˆ ˆ ˆ2

     =
1

ˆ ˆ 1

ˆ ˆ     = 2
1

ˆ ˆ ˆ     = 2
1

ˆ

ˆ     
1
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1
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N

n n

n

N N N

n n
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N
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N
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n

n

x x

N
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N

x x
N

x x
N N N N

x
N N
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N N N

x
N

x
N N

x
N

N

2

1 1

ˆ
N N

n

n

x

N N

                               (1-13)

 

The advantage of this last equation is that each individual sample, ˆ
nx , can be added to the two 

running summations (i.e., the numerators—one the sum of the samples and the other the sum of 

the samples squared) and then be discarded, eliminating the need to save them for later use. 

Standard Deviation 

As you will remember, the square root of the variance is the standard deviation, which gives a 

measure of the variation expected in the individual sample ˆ
nx .  

 
Example:  Back to our example of finding  using the probabilities from the 

previous example,  

 

Outcome 1 = Hit the circle: 1 14; / 4 0.7854x   

Outcome 2 = Miss the circle: 2 2 10; 1 0.2146x    

 

The associated variance of the sample would be:  
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2
2 2

1

2 2

( )

    (0.7842) (4 ) (0.2146) (0 )

    2.697

i i

i

x

 

                                      2.697 1.642  

 

Estimate of the standard deviation of the mean  

The final formula is for the variance of the mean,
2

x̂  and the corresponding standard deviation of 

the mean after N estimates of the mean have been obtained.  (You should be careful to avoid 

confusing this with the variance of the sample itself.)  The variance of the mean refers to the 

expected amount of variation we should expect from various estimates,
 
x̂ , we might make of x .  

 

We should be careful here.  Since it is our practice to run a Monte Carlo calculation, consisting 

of N samples, only once, we need to realize that what we are talking about here involves the 

variation that we would expect among many estimates of the mean (each involving N samples).  

If we run a series of Monte Carlo calculations, each of which involve N estimates, and each of 

which give us an estimate x̂  of x , then 
2

x̂  involves the variation that we would expect in these 

series of estimates, x̂ .  Be sure you understand the difference between 
2

x̂  and 
2

.  

 

There is a compact derivation in the text's Eq. 7-82 to Eq. 7-92, which shows that:  

2
2

x̂
N                                                              (1-14)

 

[NOTE: In statistical literature, our estimate of the standard deviation is referred 

to as the “standard error”, with the symbol S replacing the sigma we are more 

used to. I am going to stick with the sigma and trust that you will know from 

context whether it is an estimate or a true standard deviation.] 

The square root of this variance is, again, the standard deviation, this time the standard 

deviation of the mean:  

2

ˆ ˆx x
N                                                      (1-15)

 

You should appreciate the power of this relation: It allows us to accurately estimate from one set 

of N samples (which would give us only one estimate of the mean) how much subsequent means 

of N samples each would be expected to vary.  It saves us a boatload of computing.  
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This value x̂  is the second most important output result of a Monte Carlo calculation (the most 

important being our estimate of the mean itself, x̂ ), giving us a measure of the confidence we 

can have in our estimate, x̂ .  The way that Monte Carlo results are generally reported (in terms 

of our notation) is:  

ˆ
ˆ

xx  

Or, in the case of MCNP, in terms of fractional standard deviation (FSD): 

ˆˆ
ˆ
xx

x
 

 

Example:  Back to our example of finding , using the probabilities from the 

previous example, the standard deviation of the mean for a sample of N=10,000 

would be:  

ˆ

2

ˆ

1.642
0.01642

10000xx
N  

(where 1.642 was found from a previous example). 

 
 

We can add this to our previous coding to get a measure of the expected accuracy of the answer: 
 

import java.util.Scanner; 

class Pi1 

{ 

  public static void main(String[] args) 

  { 

    while(true) 

    { 

      System.out.println("Input n?"); 

      Scanner sc=new Scanner(System.in); 

      int ntry=sc.nextInt(); 

 

      if(ntry < 1)System.exit(0); 

      int n=ntry; 

      double pi=0.; 

      double piSquared=0; 

//********************************************************************** 

//                                                                     * 

//      For each history:                                              * 

//                                                                     * 

//********************************************************************** 

      for(int ihistory=0;ihistory<n;ihistory++) 

      { 

        double x=2.*Math.random()-1.; 

        double y=2.*Math.random()-1.; 

        double score=0.; 
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        if(x*x+y*y < 1.)score=4.; 

        pi+=score; 

        piSquared+=score*score; 

      } 

      pi/=n; 

      piSquared/=n; 

      double varDist=n/(n-1.)*(piSquared-pi*pi); 

      double sdDist=Math.sqrt(varDist); 

      double varMean=varDist/n; 

      double sdMean=Math.sqrt(varMean); 

      System.out.println(" After "+n+" trials, pi is estimated to be "+pi+ 

      " +/- "+sdMean); 

      System.out.println("   The SD of the distribution is ~"+sdDist); 

//********************************************************************** 

//                                                                     * 

//     Go back and see if user wants to run another problem            * 

//                                                                     * 

//********************************************************************** 

    } 

  } 

}  

 

With this new coding, the same selection of n values adds estimates of precision: 

 
After 10 trials, pi is estimated to be 2.8 +/- 0.6110100926607788 

   The SD of the distribution is ~1.932183566158592 

 

After 100 trials, pi is estimated to be 3.2 +/- 0.1608060504414739 

   The SD of the distribution is ~1.608060504414739 

 

After 1000 trials, pi is estimated to be 3.264 +/- 0.04903782936375457 

   The SD of the distribution is ~1.5507123230015005 

 

After 10000 trials, pi is estimated to be 3.1564 +/- 0.016318717291913764 

   The SD of the distribution is ~1.6318717291913765 

 

After 100000 trials, pi is estimated to be 3.13784 +/- 0.005201295211648612 

   The SD of the distribution is ~1.6447939651737167 

 

After 1000000 trials, pi is estimated to be 3.139344 +/- 0.0016437450993271284 

   The SD of the distribution is ~1.6437450993271285 

 

After 10000000 trials, pi is estimated to be 3.1408428 +/- 5.194687647526035E-4 

   The SD of the distribution is ~1.6427044699324211 

 

After 100000000 trials, pi is estimated to be 3.14172616 +/- 1.6420905585674223E-4 

   The SD of the distribution is ~1.6420905585674224 

1.3 Markov and Chebyshev Inequalities 
Most engineering students come away from the obligatory undergraduate statistics class thinking 

that about 68% of samples fall within one standard deviation of the mean, failing to properly 

recognize that this is a property of the normal distribution only (and that most distributions are 

not normal).  When asked about the corresponding properties for other distributions, though, the 

students end up with nothing to say (although many of them take quite awhile to say it). 

 

This is not too bad, actually, because most mathematicians don’t have much to say either.  But, it 

is useful to have at least a vague understanding of how non-normal distributions are distributed; 
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the main tool for this is the Chebyshev inequality, which comes from the Markov inequality.  So, 

let’s take a look at these two.  First the Markov inequality. 

 

If I tell you that I have a group of people whose average weight is 100 pounds, and I ask you 

how many of the group weigh more than 200 pounds, what would you say?  (That is, after 

saying, “How could I possibly know, you idiot?  You just made up the problem!”)  Can you say 

anything at all about it? 

 

After thinking a minute, you should be able to say, “Well, it can’t be more than half.  If more 

than half weigh more than 200, then the average would have to be higher than 100.”  (Since 

weight has to be positive.) 

 

This logic is expressed in the Markov inequality.  It states that if all samples are non-negative, 

then the fraction that is greater than nx has to be less than 1 n .  The formal proof is a string of 

inequalities that you need to be able to reproduce on a test (with the explanation): 

0

( ) ( )

        ( )    (Because the range of integration is smaller)

        ( ) ( )    (Because  is the lower limit of x)

        ( )    (Because  is a constant)

   

nx

nx

nx

E x x x x dx

x x dx

nx x dx nx

nx x dx nx

     Pr{ }   (Because the integral defines the probability)

1
  Pr{ }

nx x nx

x nx
n   (1-16)

 

The Chebyshev inequality builds on this and is not quite as intuitive (at least to me).  Its 

derivation begins with the observation that since the squared error of a distribution has to be 

positive, then the distribution of squared errors satisfies the requirements of the Markov 

inequality.  Therefore (and this is a little tricky), we can substitute 
2( )x x for x (along with 

its expectation, the variance) in the  previous equation:

 
2 2 2 2 2

2 2

(( ) ) Pr{( ) }

1
  Pr{( ) }

E x x n x x n

x x n
n

                   (1-17)
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We then modify the above slightly by replacing n with
2n (i.e., simply replacing one positive 

constant with another one) and recognizing that the same probability must apply to the square 

root of the values, (i.e., the probability that x squared is greater than 4 must be the same as the 

probability that the absolute value of x is greater than 2):

 

2 2 2

2

2

1
Pr{( ) }

1
Pr{ }   

x x n
n

x x n
n                                    (1-18)

 

This final result says that the probability that we choose a value more than n standard deviations 

away from the mean of a distribution has to be less than or equal to 1/n
2
. 

This is analogous to our 

knowledge of the normal distribution, but much less precise.  For example, if we know that a 

variable is distributed normally, then we can say that 68.27% of the variables should fall within 

on standard deviation; if we have an unknown distribution, then the best we can say is that at 

least 0% are within one standard deviation.   

 

ZERO per cent?  What use is that?  That doesn’t tell us anything at all!  But at least it gets a little 

better as we increase n: We can say that at least 75% are within two standard deviations—versus 

95.45% for normally distributed variables.  That is not much, but at least it is something.  (For 

mathematicians, what really matters is that the probability is guaranteed to approach one as n 

increases.  This is useful to mathematicians developing proofs.) 

1.4 The Law of Large Numbers 
Now for something a little more useful to us.  The principal theoretical basis of Monte Carlo is 

the Law of Large Numbers (LLN), which can be over-simplified as: 

1

ˆ( )

( ) ( ) lim

N

b i

i

N
a

f x

f f x x dx
N

                                      (1-19)

 

where the samples ˆ
ix  are chosen using the PDF ( )x .  That is, a straight average of samples 

of a function (each of which is chosen using the same PDF) is guaranteed to approach the PDF-

weighted mean of the function as you take more and more samples.  

 

The usefulness of this is the Rosetta-Stone-like way in which the result of an integration is 

equated to the expected long-term result of a Monte Carlo process.  This gives us the basis for 

applying the first “step” to the integration of functions, i.e., that a Monte Carlo game consisting 

of choosing samples of x according to the PDF and “scoring” the value of the function at those 

points will have an expected value equal to the indicated integral.  All function-based Monte 

Carlo simulations are grounded in this Law. 
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We engineers will usually just write the LLN as above (i.e., with the limit as N “approaches 

infinity”), and then proceed to use it.  However, you need to be aware of the fact that this 

formulation of the LLN is not quite rigorous. 

 

The reason it is not goes back to our first encounter with the formal definition of the limit in our 

first calculus class: 

 

 

Or, as my calculus teacher used to say, “Give me an epsilon and I will give you an N.” 

 

Applying this rigorous definition of the limit to our oversimplified definition of the LLN, we 

would have to say that  if we define our Monte Carlo estimate of f   based on N samples as: 

1

ˆ( )
N

i

i
N

f x

f
N                                                (1-20)

 

then our formulation of the LLN reduces to an assertion that the sequence 1 2 3, , ,...f f f   

converges to f in the limit as N increase.  This is not really true. 

 

Our situation falls short of the definition of a limit because no matter what epsilon I give the 

calculus teacher, for every N—no matter how large— Nf has some probability of falling outside 

epsilon because it is governed by a distribution that approaches (but does not reach) zero on the 

tails. Ultimately, our oversimplified definition of the LLN breaks down because we do not have 

a defined value for each of the elements SN of our sequence, but only a distribution of possible 

values for each element.   

 

Thus, although we know that these distributions “tighten up” around the expected value as N 

increases, we cannot say that the value has to fall within  of the mean.  So convergence to the 

limit cannot really be claimed. 

 

Although this situation is one that is unlikely to keep us up at night, as I said, I want you 

generally knowledgeable about two ways that this shortcoming is handled by formal 

mathematicians. 
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Both of the approaches switch our attention away from the sequence of estimates Nf  (which will 

be different for each Monte Carlo simulation run), and instead concentrate on the unchanging 

probability distributions obeyed by the Nf
 
for each value of N.  (That is, we cannot say exactly 

what the value of Nf  will be after N samples are averaged, but we can be confident that it will 

be distributed according to a fixed, predictable probability distribution.) 

 

The first of these approaches is called the “weak form” of the LLN.  It drops the requirement that 

I give you a specific N for each epsilon that you give me, replacing it with the weaker 

requirement that, if you give me an epsilon I will show you that, as N grows, the probability that 

a chosen x is farther away than epsilon from the mean has a limit of zero.  (That is, the integral 

over the “tails” of the distribution more than epsilon away from the mean will get smaller as N 

increases.) 

 

This is formally proven in Bernoulli’s theorem, and it has one more point that you should know:  

It requires that the sequence be based on samples that have the (so-called) “i.i.d” property: They 

are independent and identically distributed.  (For us, this simply translates into the requirement 

that the rules of the game do not change while the game is being played.) 

 

The second form that I want you to know about is the “strong form” of the law.  Instead of 

dropping the requirement that I have to give you a specific N, it adds to my burden.  It says that, 

if you give me both an epsilon and a positive non-zero fraction delta (no matter how small), then 

I can give you an N such that, for any element of the sequence greater than N, the probability that 

the chosen x falls further than epsilon away from the mean is less than delta. 

 

So, it deals directly with the fact that Nf has a distribution rather than a fixed value, by making 

the requirement depend on the (shrinking) distribution itself. 

 

Interestingly, the proof of the strong form does NOT require that the samples be independent or 

that the rules of the game stay the same.  All it requires is that the mean stays constant and that 

the variance of the game remains finite as the game is played.  It opens up the possibility that we 

can change the rules of the game as we go (if we want to) based on what we have observed so 

far. 

1.5 Central Limit Theorem 
The second most useful theoretical basis of Monte Carlo is the Central Limit theorem, which 

states that if you sum independent variables chosen from the same distribution (no matter what 

the distribution is), this sum will tend to be distributed as a normal distribution (in the limit as the 

number of variables being summed increases without bound).   

 

In terms of our stream of estimates:  
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this means that if you repeatedly average N values of x (e.g., you average the first 100, then the 

second 100, then the third 100, etc., and compare these averages), then IF N is large enough, 

these averages will be distributed in a normal distribution, no matter how the x's themselves are 

distributed.  This is great news for Monte Carlo scorers because averaging large numbers of 

estimates of a desired value (with no preknowledge of the distribution of the population) is 

exactly what a Monte Carlo simulation does. 

We can then use known properties of the normal distribution in characterizing these sums (e.g., 

that 68.3% of values are expected to be within one standard deviation of the mean).  Of course, 

for this to be true, N has to be "large enough"; but in practice the thousands-to-millions of 

histories we use in our Monte Carlo simulations are large enough. (And, if we have doubts, we 

can always apply known “normality tests” to the N estimates.) 

 

A necessary result of the Central Limit Theorem is that the sum of two (or more) normally 

distributed variables will itself be normally distributed.   

This is as much as I am going to say about the Central Limit Theorem, but you have a homework 

problem that will allow you to dig a little deeper. 

1.6 Pseudo-random Numbers 
This section switches our focus to the input side of  the "black box" first introduced in an earlier 

section:  

 

 
   

 

That is, we now consider the sequences of uniformly distributed random numbers between 0 and 

1 that we denote with the Greek letter xsi ( ), which I will refer to as “squiggle” in the lectures.  

We generally refer to these computer-supplied numbers between 0 and 1 as “uniform deviates”, 

although the algorithms that deliver them are still referred to as “random number generators”. 
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As implied by the figure, these form the raw material from which every Monte Carlo method 

creates its estimates.  And, as with any human enterprise, the quality of the inputs has a strong 

influence on the quality of the outputs.  In the early days of Monte Carlo (the 40s and 50s), it was 

common for researchers to suggest physical devices—based on random physical phenomena 

such as nuclide decay—to generate truly random uniform deviates.  As computers have gotten 

faster and faster, this has gotten less and less feasible.  (For nuclide decay for example, we need 

to DETECT about 500 particles for each uniform deviate generated.  If we were to try to keep up 

with a 1 gigaHz clock speed at, say, a 10% counting efficiency, we would need a (500 particles 

detected/uniform deviate)*(1.e9 numbers/sec needed)/(10% counting efficiency) ~= 100 curie 

source!  

The most common sources of "random" numbers nowadays are the pseudo-random numbers, 

which (though not truly random) can be designed to be "random enough" for our purposes. 

Linear congruential generators 

For the most part, Chapter 7 in the Numerical Recipes book (available at www.nr.com, which I 

recommend you get a copy of if you plan to do much computational work in your career) covers 

the material well.   

Here are the principal ideas that I want you to remember:   

 Any random number generator from a computer is not truly random (since it is 

repeatable). 

 This repeatability is actually very important to us for “code verification” reasons.  (That 

is, we want to be able to duplicate calculations to show that a computer code is working 

correctly.) Also, this repeatability is the basis of some Monte Carlo perturbation methods. 

 The most common form is that of "linear congruential generators", which generate a 

series of bounded integers with each one using the one before it with the formula: 

1 (mod )n ni ai b m
                                                (1-21)

 

1
1

n
n

i

m
,                                                          (1-22) 

which makes 1 impossible, but 0 possible. 

[NOTE: In case your number theory is a little weak, b(mod m)—where both are 

positive integers in our case—denotes the remainder once the integer m has been 

subtracted from the b as many times as it can be (with a positive remainder). 

13(mod7)=6, 17(mod 4)=1, etc.] 

There are several problems that can show up in random number generators:  

 

http://www.nr.com/
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1. Periodicity: The string of numbers is finite in length and so will repeat itself eventually.  

If this number is lower than the number of random deviates that we use in our algorithm, 

then we will lose accuracy (and not know it). 

2. Bad choices of a, b, and m can lead to correlation among successive numbers (e.g., a very 

low number always followed by another very low number).  It can be shown that a "full" 

period of m can be assured by choosing: 

 a(mod 4)=1 

 m as a power of 2 

 b odd. 

3. Bad choices of a, b, and m might also mean that certain domains of the problem may be 

unreachable. (I have actually seen this occur.) 

4. We have to be careful not to depend on the later digits of a uniform deviate: they may be 

less random than the early digits (since our “continuous” ’s are really fractions with m in 

the denominator). 

 

These problems often show up in the "default" random number generators on computers.  

   

 

Example: Find the pseudo-random series corresponding to m=8, a=5, b=3, i0=1 (which 

fits Category 2 above, so should have period m=8). 

 

Answer:      

# i ai+b Mod m 

0 1 8 0 0.000 

1 0 3 3 0.375 

2 3 18 2 0.25 

3 2 13 5 0.625 

4 5 28 4 0.5 

5 4 23 7 0.875 

6 7 38 6 0.75 

7 6 33 1 0.125 

 

Extending the period using more than one generator 

One consequence of use of the linear congruential generators is that no more than m uniform 

deviates can be generated before the series begins to repeat. Fortunately, you can get around this 

limitation by combining the results of several generators.  If you use N different generators, add 

the N uniform deviates, and keep the fractional part, the resulting “combined” uniform deviate is 

uniformly distributed and the series has a period equal to the PRODUCT of the periods of the N 
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generators.  For example, the FORTRAN subroutine used to get a (double precision) uniform 

deviate for the KENO and MORSE computer codes at ORNL is the following:  
   

 

      DOUBLE PRECISION FUNCTION FLTRN()  

      INTEGER X, Y, Z, X0, Y0, Z0, XM, YM, ZM  

      DOUBLE PRECISION V, X1, Y1, Z1  

      EXTERNAL RANDNUM  

      COMMON /QRNDOM/ X, Y, Z  

      SAVE /QRNDOM/  

      PARAMETER ( MX = 157, MY = 146, MZ = 142 )  

      PARAMETER ( X0 = 32363, Y0 = 31727, Z0 = 31657 )  

      PARAMETER ( X1 = X0, Y1 = Y0, Z1 = Z0 )  

      X      = MOD(MX*X,X0)  

      Y      = MOD(MY*Y,Y0)  

      Z      = MOD(MZ*Z,Z0)  

      V      = X/X1 + Y/Y1 + Z/Z1  

      FLTRN  = V - INT(V)  

      RETURN  

      END 

 

Close examination of this coding reveals that it uses 3 linear congruential generators (with b=0, 

m=prime number, and period=m-1).   

 

[NOTE: I have no idea where they found these three underlying generators, but 

each of them will cycle through every integer from 1 and m-1, leaving 0 out.  This 

is necessary because, with b=0, if in ever got to be 0, it would be 0 for all larger 

n.] 

The individual generators have periods of about 32000 (which makes them codable on 16-bit 

integer computer systems), but combined they have a limiting period of over 30 trillion; since 

their m values are prime numbers, it will take this long for the same combination of the three 

generators to come up again.  This should be large enough for most (present-day) applications, 

although it is becoming inadequate for large massively parallel computing systems.  (But all they 

would have to do is find a 4
th
 one to throw in the mix to give them another factor of 30,000 in the 

period, right?) 

 
1.7 Dimensionality 
A nuclear particle transport expert would say that the neutron flux distribution in a material is a 

7-dimensional value: three space coordinates, two direction angles—polar and azimuthal—, 

energy, and time. Particle transport problems are, to the Monte Carlo theorist, infinite 

dimensional problems.  

Dimension:  The number of uniform deviates used for each estimate of the answer.  

(So, every time a particle scatters, the code has to pull some random deviates to find its next 

energy, direction, and distance to next collision.  And since there is no upper limit on how many 

times a particle can scatter, particle transport has infinite dimensionality.)  

 

We began the course by saying that a Monte Carlo method consists of two steps.   The first step 

is to design a numerical experiment and the second is to run it.  No matter how revolutionary, 
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innovative, etc., we are in the first step, the second looks the same:  We "draw out" a certain 

number of uniform deviates (say, N) and, from them, produce a single number as the resulting 

estimate of whatever we are looking for.  

 

The process is mathematically indistinguishable from estimating the average value of a function 

1 2( , , , )Nf x x x  of N dimensions, each dimension having a domain (0,1).   

 

That is, even though we engineers see the “black box” in my recurring graphic: 

 

as being a very complicated statistical transformation (where all the work is done), if we back off 

far enough and squint our eyes a bit we can see that this is no more than a fancy function.  (A 

function just consistently maps input scalars into output scalars; this black box just maps  

values into scalar estimates of our effect of interest, x.  If you were to put in the same uniform 

deviates every time, you would get out the same estimates every time.)   

 

Example: Find the expected value of the sum of two fair dice (i.e., 6 sides with 

values 1, 2, 3, 4, 5, and 6—each of which is equally likely to come up).  

Probability point of view:  The expected value of a single die is the average of 

its 6 values, which is 3.5.  Therefore, two dice have an expected value of 7.  

Analog Monte Carlo point of view:  Devise a Monte Carlo method (numerical 

experiment) that mimics the action:  

1. Pick an integer value among the first 6 integers.  (This could be accomplished by 

"pulling" a uniform deviate, multiplying it by 6, and rounding up to the next integer.)  

2. Pick another integer value among the first 6 integers.  (Repeat step #1 with a different 

uniform deviate.)  

3. Sum the values from step 1 and step 2 to form the estimate.  

Repeat steps 1-3 N times.  The resulting ANSWER is the sum of the scores 

divided by N.  

Functional point of view:  Looking at the Monte Carlo process we just ran, we 

can see that the process was one that turned two uniform deviates into an 

estimate.  Although our thought processes involved chance and probability, the 

result does not—the same two uniform deviates would produce the same estimate 

every time.  In other words, the Monte Carlo process actually defines a 
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deterministic function of the uniform deviates that are used.  In this case, the 

function is a two dimensional histogram (which actually looks like columns of 

blocks if you think of the numbers as the number of blocks in each of the 36 

stacks of blocks you are looking down on.):  

 

 

The two dimensions, x and y, correspond to the two uniform deviates that are 

used in the Monte Carlo process and have domains limited to (0,1).  The answer 

itself can be written as the average of the function, which corresponds to the 

integral of the function:  

1 1

0 0

Answer= ( , )f x y dx dy  

where f(x,y) is the height of the structure at (x,y)—i.e., the height of the column 

that (x,y) falls into. 

 
The example is applicable to every Monte Carlo process.  All of them turn a set of uniform 

deviates between 0 and 1 into estimates of a desired value, so each of them is the same as the 

problem of finding the integral of a multi-dimensional function. If we were willing to do the 

work, we could even construct the function that maps the  inputs into the scores.  For example, 

you can imagine the chart we used for the original pi problem: 
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as you look down on a red cylinder (of height 4) on a blue table (with the lower left corner at 

(0,0) and width/height of 1).  Again, if f(x,y) denotes the height (or lack thereof) at point (x,y), 

then our process comes down to evaluating: 

 
1 1

0 0

= ( , )f x y dx dy  

And the result of a Monte Carlo process is the average of the estimates, so correspond (through 

the LLN) to an estimate of the integral of the underlying “scoring” function.  Of course, the 

number of dimensions corresponds to the number of uniform deviates used to get each estimate 

of the answer, which explains the strange-sounding definition of “dimension” that we are using.  

 

We can actually say a little more than this, because each of the dimensions is integrated from 0 

to 1, so the functions are defined  inside a hypercube, which is a multidimensional “box” with 

unit length sides, which we will consider bounded by 0 and 1.  (That is, a 1D “box” is the line 

segment from 0 to 1; a 2D box is a square of sides 0 to 1; a 3D box is a cube of unit sides, a 4D 

box is a unit cube—of changing contents—that only exists from t=0 to t=1, etc.) 

1.8 Discrepancy 
Again, we are going to delve into a mathematical theorem and pull out the part we are interested 

in.  The Koksma-Hlawka inequality states that the error of a Monte Carlo integration is the 

product of two terms: 

1. A value, ( )V f  , called the “bounded variation” that depends on how smooth the function 

being integrated is.  This value is very particularly defined “in the sense of Hardy and 

Krause” (whatever that means), but is neither of particular interest to us nor is it 

surprising.  (It is just a rigorous way to express—and quantify—the idea that the variation 

among the ( )nf x  values will affect the accuracy of our results and that someone has 

figured out a way to quantify it.  This is not hard to believe, but is not of particular 

interest to us; whatever we have to integrate is what it is and we have to deal with it.) 

2. A value 1 2( , , , )N ND x x x , called the “discrepancy” of the sample points themselves.  This 

is the interesting one for us because it turns out that this is the source of the 1 N  term 

that limits the accuracy of pseudo-random Monte Carlo methods.  We will spend a little 
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time on this because it is NOT intuitive and affects our results; and besides, the choice of 

the sample points IS under our control. 

 

Putting the two together says that the error is determined by two factors: How hard the function 

is to integrate (“variation”) and how well our chosen sample points “cover” the domain of 

integration (“discrepancy”). 

 

In its most general form, “local discrepancy” of any “box” of values in the sample set is defined 

as the difference between the fraction of samples that should have been chosen from inside the 

“box” and the fraction of samples that actually fell within that “box”.  The total sample set 

discrepancy is just the largest “local discrepancy” among the infinite number of possible “boxes” 

in the sample set (which, as is true of much of mathematics, is easier to define than it is to 

calculate). 

 

Below is a plot of 10,000 random (x,y) points (taken from “http://en.wikipedia.org/wiki/Low-

discrepancy_sequence” ).  What rectangular “box” looks to have the largest discrepancy to you?  

(It is a little hard to quantify where the points get thick, so concentrate on the places where the 

points get thin.) 

 

 

The largest totally empty “hole” that is apparent to me (I am just eyeballing this) is near the point 

(0.65,0.90); it looks like an area that is about 0.04 wide and 0.02 high has no points at all, even 

though it should have 0.04*0.02*10000=8 points.  So, it represents a seriously undersampled 

region (and there appear to be about a dozen others of about the same size). 
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Don’t read too much into this simple example.  The “box” surrounding the maximum local 

discrepancy doesn’t have to be completely empty—in fact it usually isn’t.  For this example, 

even if you found the largest “empty” box in the drawing—which by definition would butt right 

up against 4 points marking the top, bottom, left, and right of the box—, it might very well be 

that you could get a lower discrepancy by expanding the box to include one of those limiting 

points and move that boundary to (just epsilon short of) the next point in that direction.  As long 

as the box got more than 1/10000 larger for each extra point included, the discrepancy would 

increase. (In fact, the figure above seems to have an area at about (0.05, 0.38) that has a large 

open area with only one point in the middle of it.  This probably has a higher discrepancy than 

my first example.) 

 

Strangely (at least it seems strange to me), it can be shown that putting 10 times as many points 

on the graph does not reduce the maximum discrepancy by a factor of 10, but by a factor of 

about the square root of 10.   

 

And this is the reason that Monte Carlo standard deviations decrease as the inverse of the square 

root of N; i.e., the size of the largest unsampled region goes down only as 1/sqrt(N), so our error 

does as well).  And, a whole branch of Monte Carlo theory is concerned with replacing our 

pseudo-random numbers with sampling schemes that provide a more even spread of samples 

(“low discrepancy” sets) to make the accuracy improve faster. 

 

A related measure (much easier to calculate) is the “star discrepancy” which is similarly defined, 

but instead of allowing any box, requires the candidate boxes to have a lower left hand corner at 

the origin.  This is much easier to calculate (since the candidate “boxes” are butt up against 

points on only TWO sides instead of FOUR). 

 

Applied to one dimensional samples (e.g., the uniform deviates delivered by an LCG), the star 

discrepancy is defined as: 

*

0 1
( ) max x-Fraction of random numbers in (0,x)N

x
D x

                   (1-23)
 

In practice (which for you will be in a homework problem), you do not have to check every 

value of x in the domain, because the maximum will occur either right before or right after one 

of the samples.  For example, if the first of 10 samples is 0.06n
, then the only possible 

candidates for the star discrepancy from this point are 0.06 and 0.04—based on the fact that:  

 

1. For x JUST LESS than that first value we SHOULD have picked 6% of our samples 

already but had ACTUALLY chosen 0%, giving us a “candidate” star discrepancy of 

0.06; and 

2. For x JUST GREATER than that first value we SHOULD have picked 6% of our 

samples already but had ACTUALLY chosen 10%, giving us a “candidate” star 

discrepancy of 0.04. 
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The winner (so far) is 0.06 from (1.)—but, of course, if the first number had been less than 0.05 

the candidate start discrepancy would have come from (2.)—, and we move on to the next 

uniform deviate “point” to see if a larger star discrepancy is encountered. 

 

Example: Find the star discrepancy for the uniform deviates 0.82, 0.26, 0.23, 

0.04, and 0.61. 

Answer:  First we sort them into increasing order: 0.04, 0.23, 0.26, 0.61, 0.82.  

The graph of “x-fraction of uniform deviates in (0,x)” is this: 

 

So, for each of the chosen uniform deviates, we find the star discrepancy 

“candidates” just before and after the value: 

 

Value 

Fraction 

selected 

Fraction 

expected 

 

Difference 

0.04 
0.0 0.04 0.04 

0.20 0.04 -0.16 

0.23 
0.20 0.23 0.03 

0.40 0.23 -0.17 

0.26 
0.40 0.26 -0.14 

0.60 0.26 -0.34 

0.61 
0.60 0.61 0.01 

0.80 0.61 -0.19 

0.82 
0.80 0.82 0.02 

1.00 0.82 -0.18 
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The largest absolute value of these candidates is 0.34, which becomes the star 

discrepancy.  (Notice that, for each “pair” of candidates from each point, the first 

one minus the second one is always 1/N.) 

1.9 Quasi-random sequences 
As briefly mentioned in the previous section, Monte Carlo error can be reduced (theoretically) by 

using random number sequences that are more evenly distributed. These so-called quasi-

random numbers, are not actually random—they follow fixed, repeatable patterns—but can be 

“plugged in” to Monte Carlo algorithms in place of the pseudo-random numbers to result in more 

accurate approximations.  

 

They are not really used very much for Monte Carlo methods in radiation transport. But, because 

they are of such importance to the general field of Monte Carlo (i.e., beyond transport methods), 

you should have a taste of what they are, how to get them, and what they are useful for.  

"Quasi"-random numbers are not random at all; they are a deterministic, equal-division, 

sequence that are "ordered" in such a way that they can be used by Monte Carlo methods.  

 

The easiest to generate are Halton sequences, which are “van der Corput” sequences based on 

prime number bases.  In a Halton sequence the uniform deviates are found by "reflecting" the 

digits of prime base counting integers about their radix point.  Clear as mud, right?  A simple 

example makes it clear how to do it. (“Radix point” is the proper term for what we have always 

called the “decimal point”—but using “deci-” shows our chauvinism toward the number of our 

own fingers, so must be avoided to keep from insulting other species!)  

 

Okay.  You pick a prime number to be the base (e.g., 2).  You then simply count in that base, like 

the first two columns below:  

       

Base 10 
Base 10 number 

translated to Base 2 
"Reflected" Base 2 

=Reflected Base 2  

translated into Base10 

1 1 0.1 0.5 

2 10 0.01 0.25 

3 11 0.11 0.75 

4 100 0.001 0.125 

5 101 0.101 0.625 

6 110 0.011 0.375 

7 111 0.111 0.875 

8 1000 0.0001 0.0625 

 

The third column shows what we mean by "reflecting" the number; we put a mirror at the “radix 

point” so the digits become fractions (with the order reversed).  When translated back to base 10, 

each of these become the next uniform deviate in the sequence.  
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If you follow the formula, you can see that after M=base
N-1 

 numbers in the sequence (1,3,7, etc., 

for base 2), the sequence consists of the equally spaced fractions (i/(M+1), i=1,2,3,...M).  

Therefore, the sequence is actually deterministic, not stochastic.  Basically, it “covers”  the (0,1) 

domain multiple times, each time with a finer resolution. 

 

The beauty of the sequence is that the re-ordering results in a very nearly even coverage of the 

domain (0,1) even if the number of uniform deviates chosen does not correspond to base
N-1 

.  

 

Because you need ALL of the numbers in the sequence to cover the (0,1) domain (which is not 

true of the pseudo-random sequence), it is important that all of the numbers of the sequence be 

used on the SAME  decision.   

 

[NOTE: Pay attention to this: In our pseudo-random Monte Carlo algorithms, we 

have ONE random number generator.  We use its first value for the first 

decisions, second for second decision, etc..  You CANNOT do this with quasi-

random sequences.] 

 

That is, for a Monte Carlo process that has more than one decision, a different entire sequence 

must be used for each decision.  The most common way this situation is handled is to use each of 

the low prime numbers in order—i.e., use the Base 2 sequence for the first decision, the Base 3 

sequence for the second decision, then Bases 5, 7, 11, etc. for the subsequent decisions.  

 

For reference, here is a Java internal class that delivers the Halton sequence for any base:  

   
static class Halton 

{ 

  public int base; 

  int count=0; 

  double previous=0.; 

  Halton(int base0) 

  { 

    base=base0; 

  } 

  double next() 

  { 

    count++; 

    int j=count; 

    double frac=1./base; 

    double ret=0.; 

    while(j != 0) 

    { 

      int idigit=j - (j/base)*base; 

      ret+=idigit*frac; 

      j=(j-idigit)/base; 

      frac/=base; 

    } 

    return ret; 

  } 

} 

 

To use it, you add the above lines at the bottom of your Java coding (but inside the final close 

braces of your code). Then for each decision you want to use it for you: 
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1. Initialize it with a “Halton decisionX=new Halton(baseX);” line. 

2. Subsequently, every time you want a new uniform deviate, you use the method 

decisionX.next(). 

 

For example, to simply count in base 5, you could use the following Java class: 

 
class Test 

{ 

  public static void main(String[] args) 

  { 

    Halton decision1=new Halton(5); 

    for(int i=0;i<25;i++) 

    { 

      double newValue=decision1.next(); 

      System.out.println(" Entry "+(i+1)+" is "+newValue); 

    }   

  } 

 

  static class Halton 

  { 

     … 

  } 

} 

 

Note that the statistical formulas that we developed in this chapter are only applicable to 

problems using a pseudo-random number generator.  So, if we use a quasi-random generator, the 

standard deviations printed by our code from those formulas will not reflect the fact that these 

results are more accurate than pseudo-random results.  Therefore, you will need to add a 

calculation of the true error (if you know it) to your printed results so you will be able to gauge 

the improvement. 

 

Why do we use pseudo- instead of quasi-random? 

If quadi-random sequences have lower discrepancy than pseudo-random sequences, why don’t 

we use them in our transport codes? 

 

The answer to this lies in the concept of dimensionality: the gains from using quasi-random 

sequences decreases with dimensionality of the problem being run.  Whereas use of the pseudo-

random sequence results (as we have seen) in errors that reduce by a factor of is 1
N

regardless of dimensionality, use of quasi-random sequences result in errors that reduce by a 

factor of 
1(log )dN

N
 for dimensionality d. 
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Chapter 1 Exercises 
 

IMPORTANT: For ALL Monte Carlo runs you make in this course, I expect you to report: 

 The mean 

 The standard deviation of the mean 

 The number of histories you used 

 

Please, for my convenience, always use N=10
n
, where n is an EVEN number (i.e., N=100, 

N=10000, etc., as many as you can afford to wait for!) 

 

Find the true mean, the true standard deviation of the distribution, and the standard 

deviation expected in a mean calculated from 1 million Monte Carlo samples of the 

following distributions. Do NOT run a Monte Carlo calculation.  These problems 

only require paper and pencil. 

 

1-1. ( ) 1,  0 1x x   

1-2. ( ) ,  0 3x x x  

1-3. 1 2 3 1 2 31  0.5   0.25 ; 1    2      3x x x
  

1-4. 
2( ) ,  1 2xx e x   

1-5. 1 2 3 4 1 2 3 41  2  4  8 ; 1   2   3   4x x x x
  

 

1-6.  For the distributions of problems 1-1 through 1-5, tell me how many Monte 

Carlo samples (N) would be required to get an estimate of the mean with a 

fractional standard deviation less than 1%.  (Label them a-e.)  Do NOT run 

the Monte Carlo calculations. 

 

1-7.  Given two uniform deviates 1 2 and 
 demonstrate (with Monte Carlo runs) 

that: 

a. The standard deviation of 1 2  is 
2 2

1 2 .  

b. The standard deviation of 1 2 is 
2 2

1 2  .   

 

1-8.  Research the Central Limit Theorem and prepare a short (< 5 page) report.  

(Show me something more than what I told you in the text.) 

 

1-9.  Find the period and last five numbers in the sequence (i.e., just before it 

repeats for the first time) for LCGs with the following properties: 

a.  m=16, a=9, b=1, i0=5 



1-31 

 

b.  m=32, a=5, b=3, i0=3 

c.  m=64, a=13, b=5, i0=1 

 

1-10.  Research a pseudo-random number generator other than LCG and prepare a 

short (< 5 page) report. 

 

1-11.   If the first five uniform deviates drawn are 0.12509, 0.15127, 0.08885, 

0.94886, and 0.54036, find the star discrepancy. 

 

1-12.  Demonstrate that the star discrepancy of an Linear Congruential Generator 

is proportional to 1/sqrt(N), by finding the expected star discrepancy for 

samples of 10, 40, 160, and 640 uniform deviates.   (Of course, to find the 

expected star discrepancy you will have to get at least 100 samples of each, 

i.e., 100 averaged samples of the star discrepancy with N=10, 100 averaged 

samples with N=40, etc.) 

 

1-13. Rework the PI problem from Chapter 1 with a Halton sequence of base 2 

for x and base 3 for y.  Plot the error (NOT the printed standard deviation) 

for N values of 100, 1000, 10000, 100000, and 1000000 for pseudo- vs. 

quasi-random solutions.  Compare to the theoretical slope of  
1(log )dN

N
. 

 

1-15.  If you regularly run Monte Carlo problems with one million samples, what 

is the highest dimensionality for which quasi-random sequences might 

reduce the error?  What about one billion?  Assume proportionality 

constants are the same, i.e., 

 
11 (log )dN

NN
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Answers to selected exercises 
Chapter 1 

1-1. Mean=0.5, SDdist=0.289,SDmean=0.000289 

1-2. Mean=2.0, SDdist=0.707, SDmean=0.000707 

1-3. Mean=1.571, SDdist=0.728, SDmean=0.000728 

1-4. Mean=1.3435, SDdist=0.263, SDmean=0.000263 

1-5. Mean=3.267, SDdist=0.929, SDmean=0.000929 

1-6. a. 3333 

 b. 1250 

 c. 2149 

 d. 382 

 e. 808 

1-9.  a. Period=16. Last 5: 0.0625,0.625,0.6875,0.25,0.3125 

 b. Period=32. Last 5: 0.96875,0.9375,0.78125,0,0.09375 

 c. Period=64.  Last 5: 0.828125,0.84375,0.046875,0.6875,0.015625 

1-11.  0.44873 

1-12.        

10 0.25906 0.00007

40 0.13334 0.00012

160 0.0679 0.0002

640 0.03407 0.0001

 

 

 

 

 

 

 


